JDLX: Visualization of Dancing Links
Maureen Doyle, Bernadina Rawe#, Amber Rogers#

Northern Kentucky University
Highland Heights, KY 41099 USA

doylem3@nku.edu, rawed1@nku.edu, rogersa2@nku.edu
: Undergraduate student

ABSTRACT

Data structures courses have settled on a familiar canon of structures and algorithms, and this is reflected in the standard textbooks. It is often useful for instructors to enliven such courses by presenting data structures that are of more recent interest, ones that may simultaneously challenge students’ understanding of algorithms and their skills in programming. Exact cover problems, exemplified by the newly popular Sudoku game as well as the classic 8-queens problem, may be efficiently solved by the DLX algorithm popularized by Knuth in 2000, and this can provide a good capstone experience in a data structures course. The DLX algorithm operates by recursion on circular multiply linked lists. Because the pointer mechanics of the DLX algorithm is quite complicated, visualization techniques are called for. As the choreography of “dancing links” in DLX is highly visual anyway, this is very natural. In this paper we review best practices in algorithmic visualization for learners, and then describe a Java-based visualization of DLX applied to N-Queens. We also present some preliminary results that indicate that it is effective in enhancing student learning.

INTRODUCTION
Given the recent popularity of Sudoku and similar games, students in data structures courses may have more interest in writing programs for exact cover problems.

The Dancing Links (DL) implementation technique of the X algorithm for exact cover problems, popularized by Knuth in 2000, is particularly useful. This so-called “DLX algorithm”, when applied to an oft-studied problem such as N-Queens, provides a capstone topic for the course. It brings together the subjects of recursion, multiply linked lists, and NP-completeness. In addition, since this algorithm is not in most standard texts, it gives students the opportunity to read an accessibly written primary source (e.g. [6]).

Nevertheless, covering the DLX algorithm in a data structures course presents one distinct challenge: it is complicated! Since this challenge is also meant to be its virtue, some way to expedite students’ grasp of the DLX algorithm’s mechanics is called for. This is where visualization comes in.

Use of visualization in the teaching of algorithms relies on sound pedagogical principles. Visualizations have been shown to be more effective if they engage the learner, rather than let the viewer watch passively [7,8,9,11]. A visualization tool that is dependent on the user to progress through the visualization requires the student to be engaged. Another principle for good practice in undergraduate education is prompt feedback [1,5]. A tool with a quiz mode offers students the opportunity to check understanding of the algorithm while studying. Based on these principles we have developed JDLX, a Java-based visualization of the DLX algorithm applied to the N-Queens problem. In what follows we present the particulars of the DLX algorithm, briefly review the state of the art in algorithm visualization, introduce the motivation and design of our JDLX visualization, and present a preliminary assessment of its success.

RELATED WORK
The DLX Algorithm and N-Queens

Invented by Hitotumatu and Noshita in 1979 [4], the DLX algorithm was named and popularized by Donald Knuth in a 2000 paper as a way to solve exact cover problems such as N-Queens [6]. The N-Queens problem asks for the number of ways to place N queens on an NN chessboard so that no queen threatens another. Solution sets are often found using recursive methods of backtracking. The problem is easily understood and the solution mastered by students during the first part of their data structures course.

The DLX algorithm is, like traditional methods, brute force and recursive, but performs better than traditional backtracking solutions for larger N because the algorithm limits changes to the data structure.

The DLX data structure for N-Queens consists of a header node in a circular linked list with a set of column nodes. Each chessboard square is represented by four nodes in the DLX structure: one node each for its row, column, upper diagonal, and lower diagonal. These are indicated by R, C, I, and D respectively. Each column header links together all of the nodes for a row, column, or diagonal from the chessboard. The four nodes that represent a square on the chessboard are then linked horizontally. Figure 1 illustrates the mapping between a 2-by-2 chessboard and the Dancing Links data structure.

[image: image1.png]

Figure 1. Chessboard to Dancing Links Structure
The DLX algorithm for placing N queens is outlined in Figure 2 and is initially called as DLX(0) with the solution count set to 0. The algorithm executes as follows. If N queens have not been placed, the column in the DLX data structure with the fewest nodes is chosen. This column is then “covered”, where covering removes the column from the data structure and removes all nodes horizontally linked to the column from the data structure. The “uncover” operation reverses this. The algorithm iterates through placement of a queen on each square and covering the adjacent columns of this column, then calling DLX for each placement. The so-called dancing occurs when a column is selected or a queen placed on a square, removing nodes from the universe while keeping the removed nodes pointers unchanged, and then removing the queen by placing the nodes back into the data structure.
Visualizations
Active learning as a best practice in teaching has been around since the 1980s [3]. In 2004, Prince [10] examined active learning research projects focusing on forms relevant to engineering and concluded that active learning benefits engineering students.

There are numerous algorithm visualizations, yet they are not routinely used in computer science education [5]. Researchers have tested students with and without access to visualizations and have found no statistical difference in student performance [7]. However, Hundhausen et. al. examined features of algorithms and determined that it is how the visualization is used, not the mere existence of the visualization, which determines whether student learning improves [5]. Hundhausen details findings that prove that students who interacted with an animation, had multiple views of data, and were given online quizzes showed improvement in demonstrating understanding of the algorithms. Hundhausen’s findings are further supported in the working group on "Improving the Educational Impact of Algorithm Visualization" list of best practices for pedagogical visualization [8].

The course unit for DLX sought to embrace active learning through the use of algorithm visualizations to provide an interactive, visual tool to aid in students understanding of the algorithm. The general foundation for the visualization requirements were based on learning and algorithm visualization research.

We determined it was not feasible to build dancing links using available toolkits, including JHAVÉ or JAWAA, due to JDLX’s requirements of a large number of nodes.
 JDLX
JDLX is an algorithm visualization tool for the DLX algorithm for solving the N-Queens problem. The algorithm is written in Java with active learning support.
Pedagogy

To meet our pedagogical goals we followed the list of best practices for pedagogical visualization produced by the working group on “Improving the Educational Impact of Algorithm Visualization” [8].

The eight best practices described by Naps et.al. [8] that JDLX incorporates are: provide resources that help learners interpret the graphical representation, adapt the knowledge level of the user, provide multiple views, include performance information, support flexible execution control, support custom input data sets, support dynamic questions, and complement visualizations with explanations.

For example, JDLX provides resources that ‘help learners interpret the graphical representation’, ‘provides multiple views’, and ‘complements visualizations with explanations’ through its main display layout which provides a chessboard, data structure visualization, and pseudocode. The three views are displayed and updated in tandem. This allows the user to visually connect which nodes correspond to which squares on the chessboard all while the pseudocode explains the queen placements.
The three best practices not a part of this release of JDLX are: provide an execution history, provide support for learner-built visualizations, and provide support for dynamic feedback. These will be considered in future releases of JDLX.
Design of JDLX
The layout of JDLX is very similar to JHAVÉ. JHAVÉ implemented the best practices that JDLX aims to provide: step forward and backward buttons; the separation between the animation and the pseudocode; quizzes; and the ability to rewind. Another reason for basing the interface on JHAVÉ is that many students are likely to have already used JHAVÉ for the visualization of other algorithms covered in data structures courses, and so JDLX requires no further instructions.

JDLX has two modes, timing and visualization, and a separate screen layout for each mode. Timing mode displays a table of elapsed time comparing DLX and standard backtracking. Visualization mode has three sections: the chessboard in the lower left, the DLX universe in the top section and the pseudocode in the lower right. The control panel for the animation is above the pseudocode Figure 3 illustrates the screen layout for the visualization mode. The highlighted line of pseudocode is the line of code that has just executed. As the algorithm progresses, the links between the nodes realign or “dance.”
[image: image2.png]Navigate Prefer

solve(QueenCounter)
if (QueenCounter == numQueens)
Solution Found!
return
Choose column object ¢
Cover(c)
for (=Down<c>; I I= c; r=Down<r>)
for (j=Right<r>; ji= r; J=Right<j>)

Figure 3. JDLX at startup for 4x4
The use of color is a critical component for understanding the layout of the universe. As illustrated in Figure 3 and first defined and illustrated in [2], each node in the DLX data structure is the same color as the chessboard square it corresponds to. Highlighting was also used to show node connections changing due to the algorithm.
Using JDLX

JDLX allows students to proceed at their own pace, stepping forward and backward through the algorithm with coordinated updates to the dancing links and chessboard.

The default mode upon startup is the visualization mode and four queens as shown in Figure 3. Students use the step forward and backward buttons to go through the algorithm one action at a time. The chessboard is updated whenever a queen is placed. Figure 4 shows one solution for four queens. In addition to stepping through the algorithm, students can select the play button to run through the entire algorithm.

[image: image3.png]'solve(QueenCounter)
if (QueenCounter == numQueens)
Solution Found!
return
Choose column object ¢
Cover(c)
for (=Down<c>; I I= c; r=Down<r>)

Figure 4. JDLX with one 4x4 Solution
Tailoring JDLX

Quizzes for JDLX can be modified in accordance with an instructor’s focus or interest. The README file in JDLX.jar contains detailed instructions for modifying the quizzes. The quizzes can be modified by removing dataInput.xml from JDLX.jar and modifying the XML file. JDLX can be downloaded from the website http://people.moreheadstate.edu/fs/d.chatham/n+kqueens.html.
 IMPLEMENTATION AND RESULTS

JDLX was evaluated in the fall 2007 Advanced Data Structures and Algorithms class (CSC 364) at NKU. A lecture on the DLX algorithm was given by the first author in one seventy-five minute class. Knuth’s paper was provided to all students. Eleven students were chosen at random and given JDLX. To help ensure that students did not share JDLX, students were told that the quiz would be scaled relative to access to JDLX.
Nineteen students took a fifteen minute quiz on the Dancing Links algorithm during the following lecture. Three students were not in class for the lecture and received a zero for the quiz. Of the nineteen students taking the quiz, nine of them had JDLX. The quiz tested students’ knowledge about the dancing links structure itself, the algorithm, and asked them to define the resulting data structure after part of the algorithm had executed. The quiz average of the nine students using JDLX was 64%. The remaining ten students attained an average of 50%. The null hypothesis tested that there was no difference in the means of the quiz using a one-tail Student t-test with unequal variances. The result was significant at 10%. Data will continue to be collected when DLX is taught in subsequent classes.
CONCLUSIONS AND FUTURE WORK

The use of Dancing Links in an advanced data structures course brings together recursion and sophisticated linked lists while focusing on a problem that they understand well. The use of JDLX led to improvement in student learning as demonstrated by improved performance on a content-specific quiz taken by junior-level students at NKU in their advanced data structures course.
In future releases of JDLX, we plan to include learner-defined visualization, dynamic feedback and execution history to implement the best practices described in [8].

ACKNOWLEDGMENTS

Thank you to Dr. R. Duane Skaggs and Dr. Kevin Kirby for their willingness to review and contribute significant editing suggestions. Thank you also to Dr. Richard Fox for his constructive comments. Our thanks to NKU’s fall 2007 CSC 364 for participating in the study of the effectiveness of JDLX.
REFERENCES
[1] Bransford, J. D., Brown, A. L., and Cocking, R. R., How People Learn. http://www.nap.edu/html/howpeople1/es.html, retrieved June 4, 2007.

[2] Chatham, R. D., Doyle, M., Fricke, G. H., Reitmann, J., Skaggs, R. D., and Wolff, M., Independence and domination separation on chessboard graphs, Journal of Combinatorial Mathematics and Computing, 2008, in press.

[3] Chickering, A. W. and Gamson, Z. F., Seven principles for good practice in undergraduate education, AAHE Bulletin, 1987.
[4] Hitotumatu H. and Noshita K., A technique for implementing backtrack algorithms and its application, Inform. Proc. Lett. 8(4) , 174-175, 1979.
[5] Hundhausen, C. D., Douglas, S. A., and Stasko, J. T., A meta study of algorithm visualization effectiveness. Journal of Visual Languages and Computing, 13, 259-290, 2002.
[6] Knuth, D., Dancing Links, Millennial Perspectives in Computer Science, Palgrave, 187-214, 2000.
[7] Montgomery, S. M. Addressing diverse learning styles through the use of multimedia, 1995 Frontiers in Education Conference Proceedings, Atlanta, GA, 1, 3a2.13-3a2.21, 1995.
[8] Naps, T. L., Röbling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L., McNally, M., Rodger, S., and Velazquez-Iturbide, J. A., Exploring the role of visualization and engagement in computer science education. Annual Joint Conference Integrating Technology into Computer Science Education. Aarhus, Denmark, 131-152, 2003.
[9] Pierson, W. C. and Rodger, S. H., Web-based animation of data structures using JAWAA. Twenty-ninth SIGCSE Technical Symposium on Computer Science Education, 30 (1), 267–271, 1998.
[10] Prince, M., Does active learning work? A review of the research, Journal of Engineering Education, 93(3), 223-231, 2004.
[11] Schweitzer, D. and Brown, W., Interactive Visualization for the Active Learning Classroom. SIGCSE Technical Symposium on Computer Science Education. Covington, KY, 208-212, 2007.
DLX(i):

 if i = N

 increment solution count

 return

 queenCol = chooseColumn()

 cover(queenCol)

 for each node x in queenCol

 for each node h linked horizontally from x

 cover(h)

 DLX(i+1)

 for each node h linked horizontally from x

 uncover(h)

 uncover(queenCol)

Figure 2. Dancing Links Algorithm

